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ABSTRACT: Large-scale untargeted lipidomics experiments involve the measurement of hundreds to thousands of samples.
Such data sets are usually acquired on one instrument over days or weeks of analysis time. Such extensive data acquisition
processes introduce a variety of systematic errors, including batch differences, longitudinal drifts, or even instrument-to-
instrument variation. Technical data variance can obscure the true biological signal and hinder biological discoveries. To combat
this issue, we present a novel normalization approach based on using quality control pool samples (QC). This method is called
systematic error removal using random forest (SERRF) for eliminating the unwanted systematic variations in large sample sets.
We compared SERRF with 15 other commonly used normalization methods using six lipidomics data sets from three large
cohort studies (832, 1162, and 2696 samples). SERRF reduced the average technical errors for these data sets to 5% relative
standard deviation. We conclude that SERRF outperforms other existing methods and can significantly reduce the unwanted
systematic variation, revealing biological variance of interest.

Untargeted lipidomics is widely used in clinical, epidemio-
logical, and genetics studies.1−4 Such studies often involve

hundreds to thousands of samples.5−7 The sequence of
experimental runs is often divided into several batches, e.g., to
allow for instrument maintenance, exchanging columns and
solvents, or due to instrument availability. The time period for
data acquisition may span weeks to months, causing systematic
errors such as temporal drift (e.g., due to decrease in instrument
sensitivity), batch effects (e.g., due to different tuning
parameters or due to maintenance work), or due to smaller
technical issues such as slight differences in solvent pH or

temperature variation. If unwanted variance (i.e., technical
error) is not treated properly, the statistical power of detecting
metabolites associated with the phenotype of interest will be
markedly reduced.8 For a case-control study, a 5% standard
deviation increment for a metabolite with a small effect size
(Cohen’s d = 0.2) would need 41 more samples to achieve 80%
statistical power (Supporting Information).
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Multiple sample normalization strategies have been attemp-
ted to combat technical errors9,10 that can be classified into three
categories: (i) data-driven normalizations, (ii) internal stand-
ards (IS)-based normalizations, and (iii) quality control samples
(QC)-based normalizations. Data-driven normalizations, such
as mass spectrum total useful signal (MSTUS),11 median, sum
normalization with all the annotated metabolites (mTIC),12 and
L2 normalizations,13 are based on the assumption of the self-
averaging property, i.e., the increase in the concentration of one
group of compounds is balanced by the decrease in the
concentration of another group of compounds in each sample.13

This assumptionmay not always be valid in lipidomics because a
specific systematic error may affect some lipids differently than
others.13,14 The IS-based normalizations, including single IS,15

global IS,16 best-matched internal standard normalization (B-
MIS),17 cross-contribution compensating multiple IS normal-
ization (CCMN),14 and normalization using optimal selection
of multiple IS (NOMIS),13 utilize internal and/or external
standard compounds added to the subject samples to normalize
the intensity of each metabolite. The IS-based methods suffer
from the fact that (i) the peak heights of IS may not be
descriptive of all matrix effects, (ii) the IS are sensitive to their
own obscuring variation,17 (iii) the IS can be influenced by
coelution of other compounds,18 and (iv) the structural
properties of the IS may not cover all chemical species found
in a lipidomics data set.17 In comparison, QC-based normal-
ization approaches are becoming more popular.6,9,18−20 Ideally,
QC samples have a matrix composition that is highly similar to
that of the biological samples to be studied, normally achieved
by pooling aliquots of the study samples. The QC samples are
then injected regularly within batches to evaluate the data
pretreatment performance, followed by QC-based normal-
ization methods aiming to reduce the unwanted variations in
signal intensity.
The aim of QC-based normalization approaches is to utilize

the intensity of QCs to regress the unwanted systematic error for
each metabolite21 so that the error can be normalized
accordingly. A key advantage of doing so is that it allows for
unwanted technical variation to be accommodated while
retaining the essential biological variation of interest.18 A
reliable QC-based normalization should (i) accurately fit
intensity drifts caused by instrument use over time, (ii) robustly
respond to outliers within the QC samples themselves, and (iii)
show resilience against overfitting to the training QCs. Some
QC-based normalization methods, such as batch-ratio19 and
LOESS (local polynomial regression),9,10,22 support vector
machine based normalization;23 eigenMS24 can reduce inter-
and intrabatch variation. However, all these normalization
methods are limited by their underlying assumption that the
systematic error in each variable is only associated with the batch
effect and the injection order (or processing sequence). None of
these methods consider the possibility of correlations of errors
between compounds. Here, we propose a novel QC-based

normalization method, systematic error removal using random
forest (SERRF) to address technical errors such as drifts and
jumps as well as intercorrelation of errors. Our fundamental
assumption is that the systematic variation for each variable can
be better predicted by the systematic variation of other
compounds, in addition to batch effects and injection order
numbers. We chose random forest (RF) as our predicting model
taking its following advantages: (1) RF can be applied when
there are more variables than samples (p ≫ n), which fits the
data structure of high-throughput untargeted lipidomics data,
while other methods, e.g., LOESS, can only be applied to cases
where p ≪ n. Thus, RF is an ideal model of utilizing the
correlation information from the other metabolites when
correcting for each metabolite. (2) RF can fit nonlinear trends
that are frequently observed in lipidomics.25 (3) RF does not
suffer from multicollinearity (i.e., high correlation among
variables).26 (4) RF tolerates missing values and outliers.27

(5) RF is proven not to be overfitting when the number of trees
increases.28

Here, we compare SERRF with 15 other commonly used
normalization approaches using six large-scale plasma lipidomics
data sets that were collected from three human cohort studies
(Table 1). We found that SERRF outperformed other methods,
reducing systematic errors significantly and thereby improving
the statistical power to discover biologically interesting findings.
We provide a free web-based toolbox to implement SERRF-
based normalizations (http://serrf.fiehnlab.ucdavis.edu).

■ MATERIALS AND METHODS

Human Plasma Samples.We utilized data from three large
cohorts, specifically the P20 study (Functional Cardio-
Metabolomics), the GOLDN cohort (Genetics of Lipid
Lowering Drugs and Diet Network), and the ADNI cohort29

(Alzheimer’s Disease Neuroimaging Initiative) (Table 1).
Sample Preparation and LC−MS Analysis. P20 study

and GOLDN study were based on EDTA plasma samples, while
the ADNI study was based on serum samples. All three studies
were acquired using a validated lipidomics assay.30−33 Briefly,
plasma lipids were extracted using methyl tert-butyl ether
(MTBE), methanol, and water followed by separation and data
acquisition of isolated lipids using reversed-phase liquid
chromatography coupled to quadrupole/time-of-flight mass
spectrometry (RPLC−QTOFMS). Data were acquired in
positive and negative electrospray ionization mode [ESI(+),
ESI(−)]. All cohort samples were run with odd-chain and
deuterated lipid internal standards and external QC samples.

SERRF Implementation. Random forest, a machine
learning algorithm originally proposed by Breiman,34 is a
combination of decision trees. A single decision tree is an
unstable classification model, i.e., the tree structure can change
dramatically if input data differ even slightly during model
building. Conversely, RF yields a more robust classifier because
it uses an ensemble of classification trees. The RF algorithm is

Table 1. Overview of Lipidomics Studies Used for Development and Validation of the SERRF Algorithm

study title, year disease ESI mode no. samples: cohort/QC samples no. of lipids

P20, 2016 cardiovascular (+) 1162/125 401
(−) 1162/126 268

GOLDN, 2018 cardiovascular (+) 2696/288 418
(−) 2692/280 366

ADNI, 2014 Alzheimer’s (+) 832/83 501
(−) 833/85 435
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nonparametric, nonlinear, and less prone to overfitting. RF
tolerates data multicollinearity, and it is robust against outliers
and fast to train.35 These attributes are desired for high-
throughput data normalizations such as in untargeted lipidomics
or metabolomics. Most importantly, RF models utilize
correlations of variables by automatically selecting the most
correlated compounds when fitting systematic error trends for
each variable (Figure 1).
Here, we assume that the systematic error trend of the ith

metabolite, si, is related to the batch effect B, the sample
acquisition time t (or injection order), and the intensity of the
pooled QCs from the other metabolites I−i,QC. To construct the
SERRF algorithm we applied RF analysis as follows: (i)
autoscale all variables of QCs and samples; (ii) for all variables,
train the RF model using the corresponding variable’s QC
intensity as response and the injection order, batch effect, and
the intensity of the QCs of the other metabolites as predictors to
fit systematic variations; (iii) normalize each compound by the
predicted systematic error to the average variable intensity
across all samples.
The systematic error si can be summarized using eq 1:

∼ Φ −s t B I( , , )i i i ,QC (1)

where theΦi is the random forest classifier. To remove the signal
drift and unwanted technical variations, the intensity of each
compound was normalized by dividing the predicted systematic
error si:

′ = ̅I
I
s

Ii
i

i
i

(2)

where the Ii′is the normalized value of the ith compound and Ii̅ is
the median average of the raw value of the ith compound Ii. Ii̅ is
multiplied to ensure that the normalized data stays as the same
level of the raw data for each compound.

■ RESULTS AND DISCUSSION
Initial Evaluation of Data Sets. We used two human

EDTA plasma studies and one serum cohort study with a
combined number of 4688 samples and more than 490 QC
samples (Table 1). Samples were injected in both ESI(+) and
ESI(−) modes. On average we detected 398 variables per
injection, yielding a data set of more than 4 000 000 data points.
First, we investigated example patterns for individual

compounds in the P20 study. Figure 1i illustrates unwanted
variation for plasmenyl-PC (34:2) [observed as an [M +
HCOO]− adduct in ESI(−)]. Lipid intensity data for pool QC
samples showed systematic variation for both between-batch

Figure 1.Raw data of eight compounds (a−h) were selected by RF analysis when normalizing (i) plasmenyl-PC (34:2) [M+HCOO]−. Results of data
normalization are given by the LOESS (j) and SERRF (k) algorithms. QC samples are represented as red dots, while human cohort samples are black
dots. For each graph, the x-axis represents the injection order and the y-axis represents the compound intensity. The lipid in panel h is an unknown
compound.
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and within-batch analysis. Interestingly, several other lipids
(Figure 1a−h) showed very similar patterns in systematic drifts.
We tested 15 data normalization methods, including four QC-
based normalization methods, but none of them utilized this
evident correlation among variables. We therefore developed a
machine learning method based on RF that utilizes correlations
among input variables for model building, and that is less
sensitive to model overfitting than most other machine learning
tools. An underlying assumption within SERRF is that the
intensity drift in one compound can be summarized and
predicted by batch effects, injection orders, and intensity drifts of
other compounds. It systematically uses all variables of all QC
samples for model building to remove batch effects as well as
within-batch drifts to remove data variance due to technical
errors. We call this method SERRF, systematic error removal
using random forest.
When we applied SERRF to the example lipid plasmenyl-PC

(34:2), we found largely reduced technical variance for the QC
samples. Interestingly, we also found improved homogeneity of
data distributions of the actual P20 human cohort samples
(Figure 1k), reflecting the randomized injection sequence of all
human cohort samples. In comparison, applying the classic QC-
based normalization method “locally estimated scatter plot
smoothing” (LOESS), we did not reduce technical variance in

QC samples for this lipid as much as by the SERRF method
(Figure 1j). More importantly, LOESS also did not fully correct
the data, as shown by the larger heterogeneity in the human
cohort samples (Figure 1j).
The inaptitude of LOESS to largely correct technical variance

is shown for all samples using principal component analysis
(PCA, Figure S2A) in comparison to SERRF (Figure S2B).
Next, we used PCA to survey overall data variance with respect
to QC samples for all samples in all cohorts (Figure 2, left). PCA
has frequently been applied to evaluate the similarity between
samples and can be used to check the analytical repeatability.
Identical samples (e.g., QC samples) should cluster together in a
PCA score plot. Hence, the effect of normalization methods
should tighten clustering of QC samples.
We observed distinct clusters within and between data

acquisition batches for QC samples in the raw data sets.
Specifically, clusters were apparent in the PCA score plots for
four data sets [all three ESI(−) cohort data and one ESI(+) data
set] in addition to other unexplained variance for two other
ESI(+) data sets (Figure 2, left). After SERRF normalization, all
QC samples in the six data sets were aggregated to one tight
cluster, with largely tightened QC distribution and no
relationship to run orders or acquisition batches. This result

Figure 2. Principal component analysis score plots obtained before (left) and after (right) SERRF normalization for three human plasma lipidomics
data sets acquired in (−) and (+) electrospray mode. QC samples are represented as red dots, while human cohort samples are black dots. The x-axes
represent PC1, and y-axes are PC2.
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indicates that batch effects and data drifts were effectively
reduced by SERRF normalization.
Evaluating SERRF Performance for Univariate Lipids.

We further evaluated the performance of systematic error
elimination in a univariate way, using the distribution of cross-
validated relative standard deviations (cvRSD). RSDs are a
commonly adopted criterion to assess the reproducibility of
bioanalytical methods is the relative standard deviation (RSD)
of QC samples.36 The RSD for each lipid in the QC samples is
calculated by dividing the sample standard deviation by the
sample mean using eq 3:

=RSD SD /Avgi i i (3)

where SDi and Avgi are the standard deviation and the average of
the QC intensity of the ith compound, respectively. Proposed
thresholds in metabolomics range from 20% to 30% RSD, but
may be flexible depending on the size of sample sets.37 However,
multivariate statistics, including machine learning tools, are
prone to overfitting. Hence, a normalization method might
perfectly correct intensity drifts on QC samples but could
perform poorly when applied to human cohort samples.
To avoid this problem, instead of calculating the QC sample

RSD for each compound directly, we calculated the fivefold
Monte Carlo cross-validated QC RSD (cvRSD). The detailed
cross-validation procedure is summarized as follows: (1) For
each compound, randomly select 80% of QC samples as training
QCs to build the normalization model. (2) Apply the model on
the rest of the QC samples and calculate the RSD on these QC
samples to validate the method. (3) Repeat 1 and 2 for five times
with different sampling of model-building QC samples. (4)
Calculate themean average of the five validatingQCRSDs as the
cross-validated QC RSD to assess the performance of normal-
ization on each compound. (5) Calculate the median of the
cross-validated QC RSDs for all the compounds as the final
performance measurement of the normalization method.
Because the validatingQCs were not being used while training

the models, we can use them to access the model performance
with little risk of overfitting. An ideal sample normalization
procedure should yield a low cvRSD. Here we compared SERRF
with 15 commonly used normalization methods including nine
data-driven normalization methods, two IS-based methods, and
four QC-based normalization methods (Table S1).
SERRF-normalized data showed a consistent lower cvRSD

(Table 2) and a large increase of the number of compounds with

<20% of cvRSD compared to the raw data and batchwise
LOESS-normalized data (Table 3). These results show that
SERRF-normalized data sets become much more valid for
subsequent univariate statistical analysis and biomarker
discovery. When comparing SERRF to the 15 commonly used
normalization methods for all six data sets, we observed that
most normalization methods indeed achieved large improve-

ments in cvRSD in comparison to the raw input data (Figure 3).
We used Wilcoxon signed-rank tests to test the significance of

performance improvement. SERRF was found to perform
significantly better (p = 0.008) than the second-best method,
batchwise LOESS normalization. Therefore, SERRF normal-
ization significantly reduced systematic errors (in terms of
cvRSD) compared to all other methods. We further confirmed
that the improvement in cvRSD by SERRF was largely
independent of the absolute signal intensity (Figure S1).
SERRF almost uniformly outperformed all other methods
across average lipid intensities. Last, we showed SERRF
normalization yielded an average of 5% cvRSD across all six
data sets and across all lipids, ranging from 3.4% to 7.3% cvRSD
in all three cohort studies (Table 2). In comparison, batchwise
LOESS normalization yielded a 2-fold higher residual error with
an average of 9.8% cvRSD (ranging from 8.2% to 12.3% cvRSD)
compared to SERRF. Raw data showed an average of 23.7%
cvRSD across all six data sets, implying that the raw data

Table 2. Median Cross-Validated Relative Standard
Deviations (cvRSD) in Three Lipidomic Human Cohorts

data set raw data (%) LOESS (%) SERRF (%)

ADNI LC−ESI(−)-MS 23.2 12.3 7.3
ADNI LC−ESI(+)-MS 17.5 11.3 4.4
GOLDN LC−ESI(−)-MS 34.1 8.4 4.7
GOLDN LC−ESI(+)-MS 21.6 8.9 3.4
P20 LC−ESI(−)-MS 26.5 8.2 6.3
P20 LC−ESI(+)-MS 19.7 9.8 3.9

Table 3. Percentage of Lipids with cvRSD < 20% in Three
Lipidomic Human Cohorts

data set raw data (%) LOESS (%) SERRF (%)

ADNI LC−ESI(−)-MS 31.9 84.6 88.7
ADNI LC−ESI(+)-MS 58.3 69.9 96.0
GOLDN LC−ESI(−)-MS 1.3 9.0 86.9
GOLDN LC−ESI(+)-MS 38.8 72.0 95.5
P20 LC−ESI(−)-MS 7.5 91.8 93.7
P20 LC−ESI(+)-MS 52.1.7 94.8 98.5

Figure 3. Box-and-whisker plots of median cross-validated relative
standard deviations (cvRSD) of the ESI(+) and ESI(−) lipidomic data
sets for each normalization method.
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acquisition was already at an acceptable quality but showed
much improvement during data normalization.
Performance of Biomarker Selection and Classifica-

tion Accuracy. The aim of data normalization is to reveal true
biological signals by removing systematic errors and to enable
biomarker discovery38 through feature selection.39,40 Each study
presented here investigated different biological questions which
will be published elsewhere. To validate that SERRF indeed
unmasks known true biological differences, we used the two P20
data sets to distinguish sex discriminants before and after
batchwise LOESS and SERRF normalization. To evaluate the
performance, we conducted (i) power analysis and (ii) modeling
prediction accuracy.
Statistical power is a key aspect of the experimental study.41

By removing the systematic errors, a valid sample normalization
procedure should be able to increase the statistical power of
detecting compounds that are associated with the factor of study
interests. We used the R package SSPA42,43 to calculate the
statistical power of detecting compounds that are associated
with sex. Figure 4A shows that, after SERRF normalization, a

higher power is achieved than by either batchwise LOESS
normalization or by using raw data. When using the Mann−
Whitney U test, the number of significant lipid differences
between men and women increased by 10−20% from raw data
to LOESS and SERRF normalization. More than half of all
detected lipids were found to be significant between men and
women, despite the huge variance in lipid abundances due to the
range of differences in body mass index, levels of physical
activity, age, or nutritional factors that is always present in large
human cohort studies. Commonly, 80% power thresholds are
used when designing human cohort studies. For distinguishing
lipid profiles between the sexes, this threshold was achieved at 88
and 102 samples for raw data but was reduced to only 76 and 92

samples when using SERRF normalization for ESI(−) and
ESI(+), respectively.
The diagnostic ability of discriminating biomarkers is

evaluated by classification accuracy, measured by receiver−
operator characteristic curves (ROC). We selected a set of best-
performing lipid biomarkers based on Mann−Whitney U test p
< 0.05 and partial least-squares discriminant analysis with
variable importance in projection (PLS-DA VIP) score >1, to
distinguish factor gender using a supervised machine learning
classifier, gradient boosting machine (GBM). These biomarkers
were used in GBM with 5-fold cross-validated ROCs (Figure
4B). SERRF-normalized data sets achieved the highest
diagnostic ability using the area under the ROC curves
(AUC), indicating SERRF was most effective in removing
unwanted systematic variations for biomarker-based classifica-
tions.

■ CONCLUSIONS

We developed a novel QC sample based data normalization
algorithm, systematic error removal using random forest,
SERRF. SERRF corrects batch effects and time-dependent
drifts in large-scale plasma lipidomics human cohort studies, but
it can also be used for other metabolomic platforms. The main
advantage of SERRF over other commonly used normalization
approaches is that it can effectively utilize information from all
correlating compounds when normalizing each individual
metabolite. When tested with six data sets from three large-
scale cohort studies, SERRF has been demonstrated to
significantly improve the reproducibility of peak abundance of
QC samples and increase the statistical power of detected
compounds associated with the phenotype of interest. We
provide a free Web site-based (http://serrf.fiehnlab.ucdavis.
edu) toolbox to implement SERRF to benefit the lipidomics and
metabolomics community.
In this study, we used a ratio of cohort samples to QC samples

of approximately 10:1.We have not tested how altering this ratio
might influence the performance of the SERRF normalization.
All six data sets used here included at least 800 cohort samples
and 80 QC samples. Using SERRF for cohorts with fewer than
500 samples has not been tested. SERRF performance may vary
or not be necessary for very small data sets.
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